30 Des 2009

RADIASI,.,.

Radiasi adalah pancaran energi melalui suatu materi atau ruang dalam bentuk panas, partikel atau gelombang elektromagnetik/cahaya (foton) dari sumber radiasi. Ada beberapa sumber radiasi yang kita kenal di sekitar kehidupan kita, contohnya adalah televisi, lampu penerangan, alat pemanas makanan (microwave oven), komputer, dan lain-lain.


Di akhir tahun 1895, Roentgen (Wilhelm Conrad Roentgen, Jerman, 1845-1923), seorang profesor fisika dan rektor Universitas Wuerzburg di Jerman dengan sungguh-sungguh melakukan penelitian tabung sinar katoda. Ia membungkus tabung dengan suatu kertas hitam agar tidak terjadi kebocoran fotoluminesensi dari dalam tabung ke luar.
Lalu ia membuat ruang penelitian menjadi gelap. Pada saat membangkitkan sinar katoda, ia mengamati sesuatu yang di luar dugaan. Pelat fotoluminesensi yang ada di atas meja mulai berpendar di dalam kegelapan. Walaupun dijauhkan dari tabung, pelat tersebut tetap berpendar. Dijauhkan sampai lebih 1 m dari tabung, pelat masih tetap berpendar. Roentgen berpikir pasti ada jenis radiasi baru yang belum diketahui terjadi di dalam tabung sinar katoda dan membuat pelat fotoluminesensi berpendar. Radiasi ini disebut sinar-X yang maksudnya adalah radiasi yang belum diketahui.

Tahun 1895 itu Roentgen sendirian melakukan penelitian sinar-X dan meneliti sifat-sifatnya. Pada tahun itu juga Roentgen mempublikasikan laporan penelitiannya. Berikut ini adalah sifat-sifat sinar-X:
1. Sinar-X dipancarkan dari tempat yang paling kuat tersinari oleh sinar katoda.
2. Intensitas cahaya yang dihasilkan pelat fotoluminesensi, berbanding terbalik dengan kuadrat jarak antara titik terjadinya sinar-X dengan pelat fotoluminesensi. Meskipun pelat dijauhkan sekitar 2 m, cahaya masih dapat terdeteksi.
3. Sinar-X dapat menembus buku 1000 halaman tetapi hampir seluruhnya terserap oleh timbal setebal 1,5 mm.
4. Pelat fotografi sensitif terhadap sinar-X.
5. Ketika tangan terpapari sinar-X di atas pelat fotografi, maka akan tergambar foto tulang tersebut pada pelat fotografi.Skema peralatan ditampilkan pada Gambar 2. Foto tulang tangan yang diambil pada saat itu ditampilkan pada Gambar 3.
6. Lintasan sinar-X tidak dibelokkan oleh medan magnet (daya tembus dan lintasan yang tidak terbelokkan oleh medan magnet merupakan sifat yang membuat sinar-X berbeda dengan sinar katoda).

Laporan pertama Roentgen mengenai sinar-X dimuat pada halaman 132-141 laporan Asosiasi Fisika Medik Wuerzburg tahun 1895. Di awal tahun 1896 reprint laporan Roentgen dikirimkan kepada ilmuwan-ilmuwan terkenal. Karena tidak dibelokkan oleh medan magnet, maka orang tahu bahwa sinar-X berbeda dengan sinar katoda. Pada saat itu belum ditemukan fenomena interferensi dan difraksi. Karena itu muncullah persaingan antara teori partikel dengan teori gelombang untuk menjelaskan esensi/substansi sinar-X. Teori partikel dikemukakan antara lain oleh W.H. Bragg, teori gelombang dikemukakan antara lain oleh Stokes dan C.G. Barkla. Sejak saat itu teori gelombang didukung oleh lebih banyak orang. Pada tahun 1912, fenomena difraksi sinar-X oleh kristal ditemukan oleh Max von Laue dan kemudian dapat dipastikan bahwa sinar-X adalah gelombang elektromagnetik. Tahun 1922 Compton menemukan efek Compton berdasarkan penelitian hamburan Compton. Berdasarkan penelitian sinar-X ia dapat memastikan bahwa gelombang elektromagnetik memiliki sifat dualisme gelombang dan materi (partikel).

Penemuan Radioaktivitas Uranium.

Laporan Roentgen diperkenalkan kepada Akademi Paris pada Januari 1896 oleh Poankale yang merupakan ilmuwan Perancis terkemuka saat itu. Di dalam artikel Akademi waktu itu terdapat prediksi Poankale yang menyatakan bahwa materi yang berpendar dengan kuat memiliki kemungkinan untuk memancarkan sinar-X juga bersama sinar fluoresensi. Banyak dikenal materi yang berpendar karena stimulasi dari sinar matahari atau sinar lain. Becquerel (Antoine Henri Becquerel, Perancis, 1852-1908) yang merupakan profesor fisika di Museum Sains Paris berpikir untuk memastikan hal ini. Keluarga Becquerel sejak dari generasi kakek bekerja sebagai profesor fisika di Museum Sains, ayah Becquerel adalah peneliti materi pendar. Becquerel segera dapat melakukan penelitian menggunakan materi pendar yang dikumpulkan oleh ayahnya. Becquerel memasukkan pelat fotografi dan kain hitam ke dalam kotak aluminium. Dia berupaya agar pelat fotografi tidak mengalami perubahan walaupun kotak aluminium terkena sinar matahari. Dia meletakkan (mengoleskan) garam uraniumi di atas kotak aluminium, membiarkannya terkena sinar matahari selama beberapa jam, lalu memroses pelat fotografi itu. Jika oleh stimulasi sinar matahari sinar-X dipancarkan dari uranium, maka sinar-X yang menembus kain hitam dan aluminium pasti akan menghitamkan pelat fotografi. Ternyata memang pelat fotografi menjadi hitam seperti yang diperkirakan. Tetapi kembali terjadi hal yang tidak diperkirakan. Karena hari berawan berlangsung terus, Becquerel tidak dapat menggunakan sinar matahari seperti di atas. Becquerel memroses pelat fotografi dengan suatu pikiran untuk memastikan bahwa pelat tidak akan menjadi hitam karena tidak terkena sinar matahari. Tetapi pelat tetap menjadi hitam walaupun kotak tidak terkena sinar matahari. Becquerel menemukan fakta ini pada Maret 1896. Setelah melakukan percobaan dengan meletakkan berbagai materi di atas pelat fotografi, ia mengetahui bahwa sifat materi pendar dan bentuk kimia tidak mempunyai pengaruh dalam hal ini. Semua materi yang mengandung uranium pasti dapat menghitamkan pelat fotografi. Khususnya dalam hal logam uranium, tingkat kehitamannya besar. Becquerel berpikir bahwa dari uranium terpancar radiasi yang mirip dengan sinar-X. Untuk sementara sinar ini disebut sinar Becquerel. Kesamaan sifat antara sinar Becquerel dengan sinar-X, selain sama-sama dapat menghitamkan pelat fotografi, adalah keduanya dapat mengionkan udara.

Penemuan Polonium dan Radium.

Marie Sklodowska Curie (Polandia-Perancis, 1867-1934) menikah dengan Pierre Curie (Perancis, 1859-1906) dan siap memulai kehidupan seorang peneliti dengan meneliti sinar Becquerel sebagai tema penelitian untuk mendapatkan gelar akademik. Pierre yang saat itu sudah menjadi salah satu peneliti terkemuka bermaksud membantu istrinya dengan menyarankan pemakaian alat ukur arus yang sangat sensitif (Galvanometer Feebles). Marie Curie menggunakan alat ukur arus yang sangat sensitif dan melakukan pengukuran secara kuantitatif radioaktivitas (kemampuan melepaskan radiasi) dari materi yang dapat ia peroleh. Hanya materi yang mengandung uranium atau thorium yang menunjukkan radioaktivitas. Berdasarkan pengukuran secara kuantitatif diketahui bahwa radioaktivitas berbanding lurus dengan jumlah uranium atau thorium, sedangkan suhu serta bentuk kimia dari materi tidak berpengaruh. Tetapi disinipun teramati sesuatu yang di luar dugaan. Dua bahan tambang uranium yaitu pitch blend (uranium oksida) dan shell corit (tembaga dan uranil) menunjukkan radioaktivitas yang besar yang tidak dapat dijelaskan dengan jumlah uranium yang ada di dalamnya. Marie Curie mencampur shell corit dengan bahan lain dan kemudian melakukan pengukuran. Ternyata hanya bagian yang mengandung uranium yang menunjukkan adanya radioaktivitas. Fakta ini dilaporkan di Akademi Sains Paris bulan April 1898. Marie Curie berpikir bahwa di dalam batuan uranium alam terdapat unsur yang belum diketahui dalam jumlah yang sangat sedikit, dan setelah itu ia lebih serius lagi menemukan unsur radioaktif yang belum diketahui. Pierre kemudian berhenti melakukan penelitiannya sendiri untuk bekerja sama dengan Marie menemukan unsur baru. (Pierre terus melakukan penelitian radioaktivitas sebelum meninggal pada tahun 1906 karena kecelakaan). Batuan dalam jumlah besar dilarutkan dan dilakukan pemisahan dengan prosedur analisis kimia. Radioaktivitas dari bagian yang terpisah diukur dengan alat ukur listrik yang dikonsentrasikan pada bagian yang memiliki radioaktivitas tinggi. Unsur radioaktif yang belum diketahui itu menunjukkan sifat yang mirip dengan bismuth. Bagian yang terambil ini ternyata merupakan campuran antara bismuth sulfat dan bahan radioaktif dalam bentuk sulfat. Pemisahan antara bismuth dan unsur yang belum diketahui itu dapat dilakukan berdasarkan perbedaan sifat sublimasinya. Bahan campuran itu dipanaskan dalam vakum pada suhu 700° C dan dibiarkan menyublim, dalam suhu 250°-300° C bahan radioaktif dalam bentuk sulfat itu menempel pada dinding seperti cat berwarna hitam. Beginilah cara penemuan salah satu unsur radioaktif yang belum diketahui. Pada Juni 1898 laporan atas nama suami-istri Curie disampaikan kepada Akademi. Dalam laporan ini diusulkan nama Polonium untuk unsur baru sesuai dengan nama negara kelahiran Marie Curie. Dari analisis juga ditemukan adanya radioaktifitas yang kuat di dalam kelompok barium, secara kimiawi sifatnya sama dengan barium. Pemisahan bagian yang memiliki radioaktivitas dengan cara pemisahan kristal berdasarkan perbedaan kelarutan dalam air, campuran air dan alkohol, kelarutan garam dalam larutan asam klorida. Dengan cara seperti inilah unsur radioaktif radium ditemukan. Penemuan ini dipresentasikan pada bulan September 1898 sebagai hasil penelitian bersama suami-istri Curie dan rekan sekerja Pemon.

Penemuan Sinar Kosmis.

Muatan listrik yang diberikan kepada kamar ionisasi akan berkurang (discharge) seiring dengan berjalannya waktu. Pada mulanya, gejala ini diperkirakan karena tidak sempurnanya isolasi. Geitell (1900) dan C.T.R. Wilson menemukan bahwa penyebabnya bukan karena tidak sempurnanya isolasi melainkan karena ionisasi udara di dalam kamar ionisasi. Bagaimana ionisasi bisa terjadi? Pertama, diperkirakan penyebabnya adalah radiasi dari dinding dalam atau gas pengisi (dari nuklida radioaktif alam yang terkandung di dalamnya). Melalui pemilihan bahan untuk dinding dan gas isian, pelepasan muatan listrik sangat berkurang tetapi tidak hilang sama sekali. Berikutnya diperkirakan radiasi dari bahan (udara dan tanah) di sekitar kamar ionisasi yang menyebabkan ionisasi udara dalam kamar ionisasi. Namun ionisasi sama sekali tidak hilang walaupun kamar ionisasi sudah dilingkupi seluruhnya dengan air atau timbal. C.T.R. Wilson (1901) dan Richardson (1906) memperkirakan penyebab ionisasi adalah radiasi dari luar bumi yang memiliki daya tembus tinggi.
Mereka melakukan berbagai pengamatan. Sekitar tahun 1910 terdapat hasil penelitian yang mendukung perkiraan tersebut. Ionisasi tingkat tinggi tidak dapat dijelaskan hanya dengan nuklida radioaktif yang berada di dalam tanah. Jika kamar ionisasi semakin dijauhkan dari permukaan bumi, maka ionisasi dalam kamar ionisasi pasti berkurang karena radiasi dari nuklida dalam tanah terserap oleh udara. Bergwitz (1910), Mc Lenna dan Macallum (1911) melakukan penelitian semacam itu tetapi pengurangan jumlah ionisasi lebih kecil daripada yang diperkirakan. Wulf (1909) melakukan penelitian yang sama di menara Eiffel dan ia menemukan jumlah ionisasi 6 kali lebih banyak, dan ini bertentangan dengan perkiraan adanya serapan radiasi dari tanah oleh udara. Ia beranggapan bahwa sumber sinar gamma ada di lapisan atas atmosfir atau serapan radiasi oleh udara lebih kecil daripada yang diperkirakan. Gockel (1910) melangkah lebih jauh dengan melakukan pengukuran jumlah ionisasi dengan kamar ionisasi yang dinaikkan pada balon udara hingga ketinggian 4500 m. Dengan demikian menjadi jelas bahwa jumlah ionisasi meningkat dengan ketinggian. Radiasi dari tanah pasti tidak akan mencapai ketinggian seperti ini, dan dengan demikian diketahui adanya sumber radiasi lain di lapisan atas udara. Gockel beranggapan penyebab lepasan muatan listrik adalah gas radioaktif hasil peluruhan inti radioaktif yang terakumulasi pada lapisan atas atmosfir. Dengan ini penjelasan terhadap hasil pengamatan sedikit mengalami kemajuan.

Secara garis besar radiasi digolongkan ke dalam radiasi pengion dan radiasi non-pengion.

Radiasi Pengion

Radiasi pengion adalah jenis radiasi yang dapat menyebabkan proses ionisasi (terbentuknya ion positif dan ion negatif) apabila berinteraksi dengan materi. Yang termasuk dalam jenis radiasi pengion adalah partikel alpha, partikel beta, sinar gamma, sinar-X dan neutron. Setiap jenis radiasi memiliki karakteristik khusus.

a. Partikel alfa Beta
Mempunyai ukuran (volume) dan muatan listrik positif yang besar. Tersusun dari dua proton dan dua neutron, sehingga identik dengan inti atom Helium. Daya ionisasi partikel alpha sangat besar, kurang lebih 100 kali daya ionisasi partikel β dan 10.000 kali daya ionisasi sinar-gamma. Karena mempunyai muatan listrik yang besar, maka partikel alpha mudah dipengaruhi oleh medan listrik yang ada di sekitarnya dan setelah terlepas dari sumbernya hanya mampu menjangkau jarak sejauh 4-5 cm di dalam media udara. Sedangkan akibat ukurannya yang besar maka partikel alpha tidak mampu menembus pori-pori kulit kita pada lapisan yang paling luar sekalipun, sehingga radiasi yang diapancarkan oleh partikel alpha tersebut tidak berbahaya bagi manusia apabila berada di luar tubuh.
b. Partikel 
Mempunyai ukuran dan muatan listrik lebih kecil dari partikel alpha. Daya ionisasinya di udara 1/100 kali daya ionisasi partikel alpha. Dengan ukurannya yang lebih kecil, partikel β mempunyai daya tembus lebih besar dari partikel alpha. Karena muatannya yang kecil daya jangkau partikel β di udara bisa sejauh 9 cm, untuk selanjutnya dibelokkan oleh medan listrik yang ada di sekitarnya.


c. Sinar Gamma
Tidak mempunyai besaran volume dan muatan listrik sehingga dikelompokkan ke dalam gelombang elektromagnetik. Daya ionisasinya di dalam medium sangat kecil. Karena tidak mempunyai muatan listrik maka sinar gamma tidak terbelokkan oleh medan listrik yang ada di sekitarnya, sehingga daya tembusnya sangat besar dibandingkan dengan daya tembus partikel alpha atau beta (β).
d. Sinar X
Mempunyai kemiripan dengan sinar gamma, yaitu dalam hal daya jangkau pada suatu media dan pengaruhnya oleh medan listrik. Yang membedakan antara keduanya adalah proses terjadinya. Sinar gamma dihasilkan dari proses peluruhan zat radioaktif yang terjadi pada inti atom, sedangkan sinar-X dihasilkan pada waktu elektron berenergi tinggi yang menumbuk suatu target logam. Sinar gamma akan dipancarkan secara terus menerus oleh sumber radioaktif selama sumber tersebut bersifat tidak stabil, sedangkan sinar-X dapat setiap saat dihentikan pancarannya apabila pesawat sinar-X tidak diberikan suplai daya (tenaga listrik).

e. Partikel Neutron

Mempunyai ukuran kecil dan tidak mempunyai muatan listrik. Karena ukurannya yang kecil dan tidak terpengaruh oleh medan listrik di sekitarnya, maka partikel neutron memiliki daya tembus yang tinggi. Partikel neutron dapat dihasilkan dari reaksi nuklir antara satu unsur tertentu dengan unsur lainnya.

Radiasi Non – Pengion

Radiasi non-pengion adalah jenis radiasi yang tidak akan menyebabkan efek ionisasi apabila berinteraksi dengan materi. Radiasi non-pengion tersebut berada di sekeliling kehidupan kita. Yang termasuk dalam jenis radiasi non-pengion antara lain adalah gelombang radio (yang membawa informasi dan hiburan melalui radio dan televisi); gelombang mikro (yang digunakan dalam microwave oven dan transmisi seluler handphone); sinar inframerah (yang memberikan energi dalam bentuk panas); cahaya tampak (yang bisa kita lihat); sinar ultraviolet (yang dipancarkan matahari).

28 Des 2009

MRAM

Kecepatan selalu didambakan oleh siapa saja. Berbagai usaha dan penelitian terus dilakukan untuk meningkatkan kemampuan . Beberapa waktu yang lalu super komputer tercepat di dunia telah hadir untuk membantu militer amerika melakukan perhitungan. Kini giliran sebuah teknologi di bidang Memory .

Sebelumnya Anda pasti pernah mendengar istilah RAM (Ramdom Access Memory) untuk menyebut memory . Memory RAM ini memiliki berbagai jenis mulai dari EDO RAM, DDR1, DDR2 dan beberapa jenis lainnya.
Namun ternyata RAM saja elum cukup untuk memuaskan kebutuhan manusia akan tuntutan kecepatan. Oleh karena itu, Fisikawan dan Insinyur Jerman mengembangkan sebuah jenis memory baru.

Memory tersebut diberi nama Magnetoresistive Random Access Memory (MRAM), memory ini bukan hanya lebih cepat daripada RAM tetapi juga Lebih hemat Energi. Kehadiran MRAM sepertinya akan meningkatkan perkembangan mobile computing dan level penyimpanan dengan cara membalik arah kutub utara-selatan medan magnit.
IBM dan beberapa perusahaan pengembang yang lain berencana menggunakan MRAM, MRAM ini akan memutar elektron-elektron untuk mengganti kutub magnet. Hal ini juga dikenal sebagai spin-torque MRAM (Torsi putar MRAM) teknologi inilah yang kini sedang dikembangkan oleh para fisikawan dan insinyur Jerman.
Dengan membangun pilar-pilar kecil berukuran 165 nano meter, akan mengakibatkan magnet variabel pada atas lapisan akan mengakibatkan arus listrik mengalir dari bawah ke atas dan akan memutar posisi elektron. Medan magnet ini akan berubah dan hanya membutuhkan sedikit waktu untuk merubah kutub medan magnet ini. Kemudian kutub utara dan selatan akan bertukar.
Jika anda bingung dengan proses di atas, tidak usah dihiraukan juga tidak apa-apa. Atau kalau mau membaca sendiri yang versi inggris disini.
Yang pasti, kecepatan MRAM mencapai 10 kali lipat kecepatan RAM. KEcepatan ini masih bisa terus dikembangkan dimasa depan.

http://shirogadget.com

13 Des 2009

Pendadaran



SMP Muhammadiyah

Materi Pendadaran Tapak Suci

1. Tentang Tradisi Tapak Suci'

- Salam Perguruan

- Sikap Hormat

- cara Pakai Sabuk

- Sikap siap

- Dll...

2. Sejarah TS

3. Materi Jurus Dasar.

4. Tingkatan Sabuk TS

5. ya Pokokne yang dah di Ajarin Aje,.,.


ATRIBUT YANG PERLU DIBAWA OLEH PESERTA


ATRIBUT KELOMPOK

1. KAYU BAKAR 5 BUAH
2. TIKAR & TENDA
3. JAMU TOLAK ANGIN 3 BUNGKUS DAN LOTION ANTI NYAMUK 3 BUAH
4. LILIN 3 BUAH
5. MINYAK TANAH SETENGAH LITER
6. KARUNG KECIL
7. OBOR


ATRIBUT PRIBADI

1. PERALATAN MCK
2. SLAYER / SAPU TANGAN
3. BAJU GANTI & PERALATAN SHALAT
4. OBAT BAGI YANG MEMILIKI PENYAKIT KHUSUS
5. INDOMI 2 BUAH DAN GELAS PLASTIK
6. UNTUK PEREMPUAN MEMAKAI KERUDUNG HITAM ATAU COKLAT


ATRIBUT PANITIA

1. MEMBAWA SENTER
2. UNTUK PEREMPUAN MEMAKAI KERUDUNG HITAM
3. MEMAKAI SERAGAM


PERATURAN PANITIA

1. MEMAKAI SERAGAM TAPAK SUCI
2. TELAH MELAKSANAKAN PENDADARAN
3. BAGI PANITIA PEREMPUAN MEMAKAI KERUDUNG HITAN / COKLAT
4. DISIPLIN DAN DAPAT BERTANGGUNG JAWAB
5. PATUH DAN TAAT PADA PERATURAN-PERATURAN SERTA PERCAYA PADA KEBIJAKAN PIMPINAN
6. MENJAGA DAN MEMBERI PENGARAHAN KEPADA PESERTA
7. TIDAK MEMAKAI DAN MEMBAWA PERHIASAN



PERATURAN PESERTA

1. TIDAK MEMAKAI DAN MEMBAWA PERHIASAN
2. SISWA YANG MEMBAWA BENDA BERHARGA PANITIA TIDAK BERTANGGUNG JAWAB APABILA ADA KEHILANGAN
3. MEMATUHI PERATURAN
4. MELAPORKAN APABILA ADA TINDAKAN YANG TIDAK DIPERKENANKAN DALAM PENDADARAN

PESERTA PEREMPUAN MEMAKAI KERUDUNG HITAM ATAU COKLAT

6 Des 2009

SISTEM INFORMASI

SISTEM INFORMASI
Sistem informasi adalah sekumpulan komponen pembentuk sistem yang mempunyai keterkaitan antara satu komponen dengan komponen lainnya yang bertujuan menghasilkan suatu informasi dalam suatu bidang tertentu. Kesatuan data olahan yang terintegrasi dan saling melengkapi yang menghasilkan output baik dalam bentuk gambar, suara maupun tulisan.

Ada lima komponen sistem informasi yaitu hardware, programs, data, procedures, dan people.

1. INPUT HARDWARE
Input hardware digunakan untuk mentransmisikan data ke processing dan storage hardware. Peralatan yang paling populer untuk memasukkan data yaitu kombinasi antara keyboard dan layar monitor. Layar monitor dianggap sebagai bagian dari input hardware karena digunakan untuk memeriksa apakah data yang akan dimasukkan telah diketik. Di samping jenis input hardware di atas, terdapat juga input hardware lainnya yaitu mouse, scanner, voice recognition device, hardwriting recognition device, machine data input (mis : modem), light pen, dan bar code reader.

2. PROCESSING HARDWARE
Processing hardware meliputi peralatan yang bertugas untuk menghitung, membandingkan dan melaksanakan instruksi-instruksi khusus. Dalam CPU (Central Processing Unit) terdapat control unit, ALU (Arithmetic Logic Unit), dan system memory yang kadang-kadang disebut main memory. Control unit mengambil instruksi-instruksi dari system memory dan menterjemahkannya. ALU melaksanakan instruksi yang telah diterjemahkan. System memory digunakan untuk menyimpan instruksi data dan instruksi program. Untuk menghubungkan CPU dengan peralatan komputer lainnya digunakan data bus atau processor channel. Processor channel terdapat pada mother board, mempunyai expansion slots yang berfungsi untuk menghubungkan dengan peralatan tambahan seperti floppy disks, plotters, printers, mouse, modem, multimedia, dll.

3. STORAGE HARDWARE
RAM dipakai untuk menyimpan data atau program yang sedang aktif diproses. RAM tidak dapat dipakai sebagai storage hardware karena kapasitas RAM terbatas dan RAM bersifat volatile, dimana data akan hilang jika sistem shut down. Sebagai penggantinya dipakai external magnetic media untuk menyimpan data dan program yang sedang tidak aktif diproses. Ada dua jenis magnetic storage hardware yaitu disk dan tape.

4. OUTPUT HARDWARE
Jenis output hardware yang banyak digunakan yaitu printer. Printer dapat diklasifikasikan dalam beberapa cara, salah satu diantaranya character printers, line printers, dan page printers. Character printers umumnya berharga murah, mencetak per karakter, dan lambat. Line printers mencetak per baris, dipakai untuk mencetak sejumlah besar bentuk standard seperti invoice bulanan. Page printers mencetak per halaman, seperti mesin photo copy dan biasanya menggunakan laser untuk menghasilkan printed character.
5. HUMAN
Sebagai User, Programer, Pengguna yang menjalankan segala aplikasi yang tersedia di kompute.

DATA
Data adalah kumpulan informasi yang disimpan di dalam komputersecara sistematik sehingga dapat diperiksa menggunakan suatu priogram komputer untuk memperoleh informasi dari basis data tersebut. Perangakat Lunak yang digunakan untuk mengelola dan memanggil kueri (query) basis data disebut sistem manajemen basis data (database management system, DBMS). Sistem basis data dipelajari dalam ilmu informasi.


HARD WARE


Perangkat keras (Hard Ware) merupakan bagian fisik komputer, dan dibedakan dengan data yang berada didalamnya atau yang beroprasi didalamnya.

Contoh perangkat keras :
CPU
MONITOR
MOUSE
KEYBOARD
JOYSTIK
RAM
POWER SUPPLY
HARD DISK
FLOPPY DISK
CD-ROM
PRINTER
SCANNER
MICROPHON
SOUND
SOFT WARE
Perangkat lunak ( Soft ware) merupakan yang menyediakan instruksi untuk perangkat keras dalam menyelesaikan tugasnya. Perangkat Lunak adalah program yang berisi kumpulan instruksi untuk melakukan proses pengolahan data. Software sebagai penghubung antara manusia sebagai pengguna dengan perangkat keras komputer, berfungsi menerjemahkan bahasa manusia ke dalam bahasa mesin sehingga perangkat keras komputer memahami keinginan pengguna dan menjalankan instruksi yang diberikan dan selanjutnya memberikan hasil yang diinginkan oleh manusia tersebut.

Perangkat lunak komputer berfungsi untuk :
Mengidentifikasi program
Menyiapkan aplikasi program sehingga tata kerja seluruh perangkat komputer terkontrol.
Mengatur dan membuat pekerjaan lebih efisien.
Macam-macam Perangkat Lunak
Perangkat lunak terbagi menjadi 4 macam, yaitu :
Sistem Operasi (Operating System),
Program Aplikasi (Application Programs),
Bahasa Pemrograman (Programming Language),
Program Bantu (Utility)


Contoh Soft Ware :
DOS
ADOBE PHOTOSOPT
LINUKS
DLL